LOik0D Ao l>
\ auiloalenll duwipll &uls

N sl Ol pdadl s
g RPN) - T |

axypall seuell o Pl 98 e
uld Vg al=iwVl yop adlsiodl d53=0llg

Jiell dice aousg LSlgel Lo ,eu 28 plaill
L.o.lam uxo JSoiw Jos ol g8 Ya s
soxill Lpolyinl 5 @lo o doeo (sle sloieVl,

Cl.uuo)J|
2 EEERNNRO, P Y A S
MLJS_kaS)swgo;mw)oﬂsqu

&, Ul &lasM glholl wdg)l ¢ ouo @lsiw)
Gabx s Auoyl doaxdl o aldle as)»
bl WV 9 plal] aveildl wldhiol

3lgadl e sl

5l 13l ozl SV b oladl a5
oSoodl jue o puas baicg A=)l odd (89
aosian)] @unsll seazdl o GlasVl S ias
d3d=0dl plooll Lo dueii aulSsl Ul =
duoyl WByga> oo A > ,ol.g.o lpsisa

deadlines

b3

il o)l plas) dsoill Vol

\
Aol b
ol

ayen)

O]
Q)

h

| R

OLS o

ALVl ol
L pS=dl plos

b

Lwgll Wloaxo

d>=ioll

&Vl asMoll pby N &, LVl asdleo plas
acliall sVl

)|>| _,JI ,um |

Cyclic executives el=l dweadl el
ol timelines &yl belazdl el Loyl swois

frame-based wl,

Event-driven systems :&las>VU ésleodl pdaill

LVl sde aunoll bl

systems

a9Ml g9 periodic a,oul lpacgn

aperiodic
Pipelined :éwgusVl el

Client-server : Juoc/pizxo pla
State machine :al=l al plas

ploodl o aludw o il asl=dl weSi
Jolgall o sac o) S| US wes
minor agldl o)Vl J Vg5 2Vl auo;ll
frames
gLl)bV oo plooll dga> o
M| J>| o 880 plaziwl sunyll bzl pgs,
Sl Ul S (9 anps trigger

)WYl Jscas 6,50l jue agldl wl)b)l dcgoxo
o]l

procedures wlbil,=| JSoi (e wldosll Juais pw
sy Lo @9)20 aoll oo lpog i u
Lol ol bl g

dolsdl dopoll pgsi @l asl> e law boaue
aoslall o ail,=l JS sleaiwl wdgall

paudi pi dl=dl 0dd O >)le e Lwslall
gLl ol bVl cowliad 8,8l wldesll

O LI CACCUINTVEO

Major Frame

Major Frame

Minor Frames

|
I

Function 1 (once every
2 minor frames)

Function 3 (once every
8 minor frames)

I
l

repeats
continuously

Function 2 (once every
4 minor frames)

Function 4 (once every
16 minor frames)

A sample cyclic executive (ssl> 3.9 gdg00

4>[Function 1

Function 2

_”"[Device I/O]"‘""’

Function 3

4>[Function 4]7

—)l-[Device /0]<->

Timer Interrupt
(e.g., 50 Hz, 20
ms timer)

A sample cyclic executive (ssl> 3.9 gdg00

2
L}
»
>
)
Ll
.<
X
)
_
X
D),

INLC |

Active
Thread

q

.uu-uuu*

------*

Function Call(s)

Invocation/Access

Trigger/Directional Access

Unidirectional Message

Shared Resource Access
(via critical section)

key

005 ehal/des] 83>l pladl 0id oz
frigger QMb| J=l o wdgo wlasl g ssus>
ga=oll olpoll
iody LS plpol) wlgloVl 8)ls] Sy
ooyl Azl ol rate Jasoll ésoy)|l seusll 599
deadline «sJilgal
semantic importance aJVul é&waVl 39

'Y

Voo phidl 0dd e uldl juwdladl llas
synchronization ¢wel;ll adec
aJl e e Ly gl oSondl @lxiwVl dls (8
65910l juc @glgVl Wi Sslei ol

lor suddl Sow Glxiwl e abdlxoll U=l oo
plaziwl plsdVl @90l e Gl wle o
59>

&

[Device /O]
[Device /O]

Qutput
Manager 1

-liln'lil.irl-l-i.lél.l-iiiliii

Qutput
Manager 2

ol o N o el e el R

Periodic
timer(s)

Event-driven system &lasVb slao ol

&
=
L]
N
e
L
LI
>
Y
)
|

7
LI
> 2
LI

WLe) oloall g Sl augoVl pdadl paseiws
o3> sl WYL (gl L) Wi Lo
ploodl BMb| J>1 o wlidgo g zll/Jlss]
pladl M5 o ozl pS=il (5935 oSy
BlaaVl gl (simg Lol oo [Lic

owll dcgoxoS pladl 0id wog Sou lip
/ol.g.oJJ eleiw

11

Ycuguvl pdail
Plpellned Systems

Y
Lo Lgb A=l 01D (o9 ubg.]g&

dyaclas wlglsl guo VB ol 1>g Lell v

|g,\2b<
S 5] -

Sl by px> oo Jiy Sgw 0

JadVl o 0eSy aic sVl (il wgulll OIS e
ooVl Job (sle @s8lSio oS u% S lgloVl 2o

[Device 1/0]

-I-.lIII-lI.lI.l-|l.II.l-|lI|I.I--lI'I-|--liiliiiiqpiliiliiiililliiii
[Device /O]

Manager 1

l'.l'.l'ill.ll!l'.l'.l!.l'j

Output
Manager 2

LA LER LRI RN R))

Periodic
timer(s)

Pipelined System _sugul ol

£
=
T
¢/
]
¢/
B
T
4
|
T
¥
¥

ploll o blw, dsoc/paxo el passiws

51 ol wliBgo o 2l,sl/Jlss] 850>

ol asloVb

plpodl SMb)

block duess @ls (58 (Juoc) JLw,Vl oloo i
(paz0) JLswVl plpo o wlg=ll pMiwl (s>
055y lai 151y el (ke (riy wanll pSl

lS)Q.DL"J
bla; 9 ;Uo.>\” Cl.zjl.ww Cl..ol.z” O

Lasoll (9.0

P oS

gVl paidl 2o @,laell Jpowl ausailly dubloll

14

LEREURIES. o1

augull plal) ayline JSuin
sl

pizoll plpo inherit O, adbodl al=l (o9
Ls\Lcu:)*;: oV i ol V| Mol 0 ©LglgVI

J>.i 0 d.J.stc\”
a>1> ;)

poll b sloc JSiu
SO o) L i duglahl]

Gic dl> (sl Jgogll iz

Device I/O] ’ Output
[e Data Collect Manager 1

Attribute N
Query ===\ Data Server

| i_ Output
[Device I/O }: Manager 2

Periodic
timer(s)

Client-server system Juoc/pixo ola

2.
>
L]
2
2
Y
Ll
>
Y
Ll
2
|

&
-
|

A 9| alclol) Uo| ,sw

sl 85azendl SVl Sasl s LoleVl i
- > £999

aJl> 9> gS\-” S>qu Ul US.OJ GA> £4999
=l (88 po Il Wy Sy wallg adla]
=l Jail dad e wldoe duai (sJ] @8loL

YY

pLQJIW.L&.Q.&&JquJLZHQJprJgS\S
> wa> daxdles @Vl s V cus Jooll
bl azl o clpV

duwdlie @ls OV o weSo pla sly J=i oo
,ol.poJ (0 ACgoxo d\-” OV 01 ,JJg.zJ P
S Lol
iy plod¥ s sl aolsiulas Joi o
’rhreod _x>I9 Sbuo oo waI qu pS.zJI

CL>¢JL20J|9

Y

O\ C IVIACTIING OTOITEIVIO

Periodic #€1™

timer(s)

Engine On
kA EA BB EASBEA Brake
Pressed

Accel

Accelerating

Reached
Cruising

Resuming Jsssssses

Ttasvavavens

Cruise

State machine system all> all ol

Y&

(.. b= @8lo)) fragile aiuse o
&luall e [a> da8200 deterministic 85i=o*
aSaolins lilSo| glizs V (sl opsll dlpwe el pla

legw ,iSVle sal=dl

2,2l VoVl plad acwlios
safety-critical

Slidl axles (sle 8,568 e (RM J awlio) lglgVL ésliee
Jdled JSLiw acjgoll BLAJCI g
Jud=ill abla)l plail) acwlios 85lanll plail
s Az V) sSoliw JSdy ol
(oW sSuolis

Yo

: Julsill sic 8rd200
S,51 plaill o sil) au6 Jsle

Jud=il 2ic da820°
o S)lged) (sSlo| Mgl
a9yl Jlw)ll &s,>

Jud=dl e da820°

O lu |

Ol (89 plaxiwM 630>
o sde LIS awousi) acjgoll
(Slw)Jl

ol oo Joel) dwlios
CORBA Jio a>gill aun,
oz V| puseas @lSo| puise
bl ae>lyJl aiedl cuuw
ol

ol oo Lol diwlio®
ac;goll

ool oo Joel) @wlbios
CORBA o a>gill aun,&

ol

augoV

Juoc/pazo

all=Jl al

Y1

SV dopo oyl wlalusVl ,asi adoc yuis
ool pbhaid acuwill dowls awdVl 0id guas
oS Vsl seuddl Lo ades)l oid o
Bjolxi Sou sl ellig a9l

aJololS Hard deadline plysl Olow wx
auin3ll sguall .8, e il pas Lle

YV

SlasVl Waas >l oo bl csiosll Jud=adl s,

e boils as

io plaill dulall s)lgoll UgSH Cazs

GL_M)J| >ga0.

J=l o &los sdasy 1dini)l blsol o =)

Lol iolois >l oo aslxl
q?).z”,ol.gx_xl

Auiojll s9.8ll ol yi>

Jud=i 3,b plaxiwl j;LasVl oy oS Jaues

YA

ol ©lgSh ow fumall Jeledl Olows
o ole JSaiw Jogi sl saillg CLL>|.L»0J|
aloizoll Jo=ll Bg,b gl

ung.o ,J.o_c Ulowo ,anaJ| a,.9979.0 L)Juu.LZJ
oga> dic (il cuxs) gdgioll s plaill
pUan| (OO CLo.g.oJ S>luc] JAC (S\0)).;.>l.)
Jaasy oo plaill sl S8 (si> i sewo HLas
N NTE NS e o>l Lblrolly dals)

ya

59 JSi e yyeiy pladl oldlhio ayaxs
robily ppo.aill 81,8) bog,i

plal) & ,0lly alall sl3=>V1 S b oll Juiodl
sl LB JSeiw plaidl dolw Olows

worst-case lgwVl a8 pladl Jolw ,ass

J8VI ol JasVl (ugSil 3yazig what-if Julss ueis

aalSoll slazsVl Coxi
bl ekl Al o ablasl s)lge sl Ulows
o)

v

a0l wlglgl Ro dusans @lgas
Fixed Priority Preemptive Scheduling

pis pl o) peo Vo aul aglsl fask daspo JSJ
()2 (Gaudasll

old plpoll gadn sleVl &gVl wls olpoll pgss
csasV| augloVl

N e WA

R

&,Sa0lus whelgl go dusa i élgi>
Dynamic-Priority Preemphve Scheduling
Jl Instance axus oo)au U unggw uS.m

BN s N o pr,oJ| oS
PRTERO

0id pey dl=idl saus=ll oyl pdy o Juldl
aJV

YY

o)l Jasodl ddgo>

Rate-Monotonic Scheduling

agdoVl sz cus> aul wlolsl go dussd @ga>
dogoll frequency ,ilgi 85L 50

dopoll deadline wsuoyll sl Ol &Vl o (b uss
s dogoll)95 e 8l 9o

dgazl pey pl Sl oo @Vl 01D i Sy
&l Olglgl 8o dusa il

Y

i ool A=l ddga>
Deadline-Monotonic Scheduling
09y s iyl Joeoll @gaz) punsi @lioy s
Ao AUl aun) absi e 8)lec dopol) sl A=l
dogol) duiol daodl aulay (sl
dopoll @glsl wsls;l LdS U8l Csuo3ll Azl WIS LadsS

dogol] duio;ll 830l gLu.x.o a0 W A=l UgSy boaue
S Lol @Vl 0is Jgmis

Y&

Vgl U,8V] Csuo)l 1=l dga>
Earliest-Deadline-First Scheduling

aSuolios wlglsl go duea iy @gas @l

oyl @bzl g @l 04 9 dopoed] Lsinyll A=)

lplid aopoll slpil Lz (sl asllao

Qopoll Bl> e sunjll A=l Ol e

Vol U8V szl Azl wls aogall Lzl Jgazoll pos)

ols aopoll ey w8Vl (uozll axdl WIS dogoll pgis
a2Vl Csaoyll A=l

oo @cgamo SV wswlacVl s ll Julsi adVl ois jogas
5,5Vl @oazdl ST JS g0 @,laoll plpol

Yo

sV 2o lzl égas>

Least Slack Scheduling
aSuoliud onggi o duee i jul dgi>
&.o,_g(.“o.o.” a0l Ba> e 8,lc 9o dopoll dolxs
oo (lowVl =l (88) séinll il o; Lolasl
dopoll 5| J=|
228l dolzill wls @ogodl Hlasl Joaxodl g
Vol ezl
dcgozxo SY Wl olusll ésby adVl 0id pgss

plooll o

1

Released

Execution time

Relative deadline

Timing parameters

Absolute
deadline

YV

FENICULUIC AON

Task : a sequence of similar jobs

- Periodic task (p,e)
+ Its jobs repeat regularly
+ Period p = inter-release fime (0 < p)
- Execution time e = maximum execution time (0 < e< p)
+ Utilization U = e/p

YA

Mw)prJulS|>|Lmay_uu%oL>

pixl sde ;56 (ssus> o) plpo dcgozo)
a9 re0ll dio | 9=l

¥a

Vgl 228Vl (03l Wld dopoll iuass

)
A
)
D
£
)
>
=
C
=
>
%

NIV INATE IVIUINUOU TUINIC |

Deadline Miss !

bR

dopall Wb dlaz) (0 alolall oyl 8,18l
2slos] alazels

Response Time

&Y

Response Time (r))

I'i = €i + g
T (T7)

HP(T) : a set of higher-priority tasks than T;

T(41)h K RS
T(i,-)#v m
R

5

E/E \EAANLIEO T EADULINNE TN'RO 1)

53V ozl asdl wls dopall duai

i

2
Y
L
|
-
1
)
L
|
)
2
L
i
Y
L
L
L
)
LI

2
Y
L
|
-
1
)
L
|
)
2
L
i
Y
L
L
L
)
LI

What is real-time scheduling theory (1)

e Many real-time systems are built with operating
systems providing multitasking facilities, in order to:

» Ease the design of complex systems (one function =
one task).

» Increase efficiency (/O operations, multi-processor
architecture).

» Increase re-usability.

But, multitasking makes the predictability analysis
difficult to do : we must take the task scheduling into
account in order to check temporal constraints —

schedulability analysis.

What is real-time scheduling theory (2)

e Example of a software embedded into a car:

1. Tasks are released several times and have a job to do for each
release.

2. Each task completes its current job before it has been released for
the next one.

3. A task displays every 100 milliseconds the current speed of the car.
4. Atask reads a speed sensor every 250 milliseconds.

5. A task performs an engine monitoring algorithm every 500
milliseconds.

— How can we check that tasks will be run at the proper rate? Do they meet their timing
requirements? Do we have enough processor resource?

— If the system is complex (e.g. large number of tasks), the designer must be helped to
perform such an analysis.

What is real-time scheduling theory (3)

Early
Verification

Requirements | —jm Design —p» | Implementation| —jp {unitl'ﬁiﬁraticn}

e The real-time scheduling theory is a framework which
provides:

1. Algorithms to share a processor (or any resources)
by a set of tasks (or any resource users) according to

some timing requirements — take urgency of the tasks
into account.

2. Analytical methods, called feasibility tests or
schedulability tests, which allow a system designer to
early analyze/"compute" the system behavior before
Implementation/execution time.

Scheduling algorithms (1)

e Different kinds of real-time schedulers:

» On-line/off-line scheduler: the scheduling is
computed before or at execution time?

» Static/dynamic priority scheduler: priorities may
change at execution time?

» Preemptive or non preemptive scheduler: can we
stop a task during its execution ?

1.

2.

Preemptive schedulers are more efficient than non
preemptive schedulers (e.g. missed deadlines).

Non preemptive schedulers ease the sharing of
resources.

. Overhead due to context switches.

Scheduling algorithms (2)

e Different kinds of real-time schedulers:

» Feasibility tests (schedulability tests) exist or not:
can we prove that tasks will meet deadlines before
execution time?

» Complexity: can we apply feasibility tests on large
systems (e.g. large number of tasks)?

» Suitability: can we implement the chosen scheduler in
a real-time operating system?

Scheduling algorithms (3)

e \What we look for when we choose a scheduler: we can
compare them according to their ability to meet task
deadlines.

»

»

»

A valid schedule is a schedule in which all task deadlines are met.
A feasible task set is a task set for which a valid schedule can be find.

Optimality: a scheduler a is optimal if it is able to find a valid
schedule, each time a valid schedule exists for a task set.

Dominant: a is dominant comparing to b if all task sets that are
feasible by scheduler b, are also feasible by a and if it exists some
task sets that are feasible by « but not by b.

Equivalent : a and b are equivalent if all task sets that are feasible by
a are also feasible by b and respectively.

Incomparable : « and b are incomparable is a can find a valid
schedule for some task sets that b is not able to find and respectively.

Models of task (1)

BLOCKED |— | READY

PENDED | RUN

e Task: sequence of statements + data + execution context
(processor and MMU). Usual states of a task.

e Usual task types:

» Urgent or/and critical tasks.
» Independent tasks or dependent tasks.

» Periodic and sporadic tasks (critical tasks). Aperiodic
tasks (non critical tasks).

Models of task (2)

Si Di Pi
; ; b E

Task i capacity Task i release times

e Usual parameters of a periodic task i:

»

Period: P; (duration between two periodic release times). A task
starts a job for each release time.

Static deadline to meet: D;, timing constraint relative to the
period/job.

First task release time (first job): S;.
Worst case execution time of each job: C; (or capacity).

Priority: allows the scheduler to choose the task to run.

Models of task (3)

Si Di Pi
i ; b E

Task i capacity Task i release times

e Assumptions for this lecture (synchronous periodic
task with deadlines on requests) [LIU 73]:

1.
2.
3.

All tasks are periodic.
All tasks are independent.

vi: P, = D; . atask must end its current job before its next release
time.

71 : S; = 0 = called critical instant (worst case on processor
demand).

Usual real-time schedulers

1. Fixed priority scheduler: Rate Monotonic priority
assignment (sometimes called Rate Monotonic
Scheduling or Rate Monotonic Analysis, RM, RMS,
RMA).

2. Dynamic priority scheduler: Earliest Deadline First
(or EDF).

Verification of a real-time system

e How to perform verification of timing constraints of a
real-time system (example):

1.

Define/model hardware architecture and execution environment:
capacity of the memory, processor, operating system features (and
then the scheduler).

Implement functions (source code).

Design software architecture and software deployment on the
hardware. Lead to a design of the software as a set of tasks, with
their parameters and constraints.

Verify schedulability.

If task set is not feasible, go back to 1, 2 or 3.

Fixed priority scheduling (1)

e Assumptions/properties of fixed priority scheduling :

» Scheduling based on fixed priority = static and critical
applications.

» Priorities are assigned at design time (off-line).
» Efficient and simple feasibility tests.

» Scheduler easy to implement into real-time operating
systems.

e Assumptions/properties of Rate Monotonic
assignment:
» Optimal assignment in the case of fixed priority
scheduling.

» Periodic tasks only.

Fixed priority scheduling (2)

e How does it work:

1. "Rate monotonic™” task priority assignment: the
highest priority tasks have the smallest periods.

Priorities are assigned off-line (e.g. at design time,
before execution).

2. Fixed priority scheduling: at any time, run the ready
task which has the highest priority level.

Fixed priority scheduling (3)

e Rate Monotonic assignment and preemptive scheduling:

» Assuming Vx\Works priority levels (high=0 ; low=255)
T1:C1=6, P1=10, Prio1=0
& T2:C2=9, P2=30, Prio2=1

T2 is preempted

Deadline
of T2
| » 4 |
T2 LUT T T e i (([[T eT4
| |
Deadline Deadline Deadline
of T1 of T1 of T1

bbb
™ | | |

0 6 10 16 20 26 27 30

Fixed priority scheduling (4)

e Rate Monotonic assignment and non preemptive
scheduling:

Assuming VxWorks priority levels (high=0 ; low=255)
T1:C1=6, P1=10, Prio1=0
T2:C2=9, P2=30, Prio2=1

Deadline
of T2
|
T2HIIIIIIIII||IIIIII|I|III||III|
Deadline Deadline Deadline
of T1 of T1 of T1
' IIIIIIIIII |||||||I|=||IIIII|I
T1
| I4
0 6 10 15 20/ 21 30

Deadline of T1 missed at 21

Fixed priority scheduling (5)

e Feasibility/Schedulability tests:

1. Run simulations on hyperperiod = [0, LCM (F;)]. Sufficient and
necessary (exact result). Any priority assignment and
preemptive/non preemptive scheduling.

2. Processor utilization factor test:

T

O = ; % <n(2% —1)
Rate Monotonic assignment and preemptive scheduling. Sufficient
but not necessary. Does not compute an exact result.

3. Task worst case response time, noted »; — delay between task
release time and task end time. Can compute an exact result. Any
priority assignment and preemptive scheduling.

Fixed priority scheduling (6)

e Compute r;, the task worst case response time:

»

Assumptions: preemptive scheduling, synchronous periodic tasks.

task i response time = task : capacity + delay the task : has to wait
due to higher priority task 5. Or:

ri =Ci + Z WaitingTime;
j€hp(i)

or:

ri =C; + Z [%—‘ d;
a

jehp(i)
hp(i) is the set of tasks which have a higher priority than task i. [z]
returns the smallest integer not smaller than .

Fixed priority scheduling (7)

e To compute task response time: compute w* with:

aoc X %l

J€hp(1)

e Start with ¥ = ;.
e Compute w}, w?, w?, ... w¥ upto:

s If w® > P;. No task response time can be computed for
task ;. Deadlines will be missed !

s If wk =wh! wkis the task i response time. Deadlines

will be met

Fixed priority scheduling (8)

e Example: T1 (P1=7, C1=3), T2 (P2=12, C2=2), T3 (P3=20, C3=5)

s w{=Cl1=8 —r; =3
s wd=0C2=2
» wi—C2+|pt|C1-242]3=5
1 e
s wi—C2+ |f|C1=2+4[5]3=5 —r =5
s wi=C3=5
1 0
s wi=03+ 3|1+ 3] C2=5+[3]3+[F]2=10
» wi=5+[2]|3+[3|2=13
s wi=5+[2]3+[13]2=15
» wi=5+[¥[3+[3]2=18
» wi=5+[L]|3+[5]2=18 =r3 =18

Fixed priority scheduling (9)

e How to schedule both periodic and aperiodic tasks, both
critical and non critical functions:

1. If aperiodic tasks are not urgent: give them a low
priority level.

2. If aperiodic tasks are urgent: use aperiodic tasks
servers.

Fixed priority scheduling (10)

e Aperiodic tasks server: periodic task devoted to the scheduling of
aperiodic tasks.

T1:Cl=4 :P1=20 (grey) Black=idle
T2 :C2=12 : P2=30 (whate)

S Cs=4 [Ps=10;

A1z released at =4 ; CA=3

B 1s released at t=9 ; CB=4

A B

-
IIIIIIIIIIAIAI-‘HBIIIIIIBIBIBIIII#IIII

4 10 12 20 23 27 30

» Polling server: run aperiodic task arrived before server activation.
Does not use processor if no aperiodic task is present. Capacity is
lost if no aperiodic task is present. Server stops aperiodic execution
when its capacity is exhausted.

o Many other servers: sporadic server, priority exchange server, ...

Fixed priority scheduling (11)

e Analysis of the car with embedded software example:

1. T'display: task which displays speed. P=100, C=20.
2. Tspeed: task which reads speed sensor. P=250, C=50.

3. Tengine: task which runs an engine monitoring
program. P=500, C=150.

e Processor utilization test:

U =31 % =20/100 + 150/500 + 50/250 = 0.7

Bound =n(2% — 1) =3(23 — 1) = 0.779

U < Bound = deadlines will be met.

e Task response time: r7..4ine = 330, "Taisplay = 20,

TTspeed = (0.

Fixed priority scheduling (12)

e ... and check on the computed scheduling

Response times = 20

A r i, - -

Tdisplay LTI T T T T T T TR T T I T T T T T R T T T T T T T TP T T T T T T T T I T T T T T 1]

0 100 200 220 300 400 500
Tspeed [T T T T T T T T T T T T T T T T T TP T T T T T T T T T T T I T T T 111

- b
0 it 250 300 Response time = 50 200
Response time = 70 P
Tengine [TT T T 11 ol | Tl T ey T T T T T T T T T T T T T T T T T TT 117
-
0 Response time = 330 . 500

e Run simulations on scheduling period = [0. LC'M(F;)]

0, 500].

Earliest Deadline First (1)

e Assumptions and properties:

»

Dynamic priority scheduler = suitable for dynamic
real-time systems.

Is able to schedule both aperiodic and periodic tasks.
Optimal scheduler: can reach 100 ¢ of the cpu usage.

But difficult to implement into a real-time operating
system.

Becomes unpredictable if the processor is over-loaded
— not suitable for hard-critical real-time systems.

Earliest Deadline First (2)

e How does it work:

1. Compute task priorities (called "dynamic
deadlines") — D;(t) Is the priority/dynamic deadline
of task i at time ¢:

» Aperiodic task : D;(t) = D; + 5;.
» Periodic task: D;(t) = k + D;, where & is the task
release time before t.

2. Select the task: at any time, run the ready task which
has the shortest dynamic deadline.

Earliest Deadline First (3)

e Preemptive case: (T1/blue, T2/yellow, C1=6; P1=10;
C2=9; P2=30)

¢ D1 (t) Ds(1)

0.9 k+D1=0+10=10 | k+ Dy =04 30=30

10,19 | k+ Dy =10+ 10 =20 | 30

20.29 | k+ Dy =20+10=30 | 30

Deadline Deadline Deadline of
of T1 of T1 T1and T2

|
|
I
0 6 10 16 21 27 30
|
|
I

Earliest Deadline First (4)

e Non preemptive case:

Deadline Deadline Deadline of
of T1 of T1 T1and T2
|
[TTTTTTT] |||||||||=|||IIII|| [ITTTTTTT]
0 6 10 15 21 27 30

Deadline of T1 missed at 21

Earliest Deadline First (5)

e Feasibility tests/schedulability tests:

1. Run simulations on hyperperiod = [0. LC'M(F;)].
Sufficient and necessary (exact result).

2. Processor utilization factor test (e.g. preemptive
case):

Sufficient and necessary. Difficult to use In real life
applications. Compute an exact result.

3. Task response time: a bit more complex to compute
(dynamic scheduler) !

Multiprocessor/distributed (1)

» Distributed systems: "A distributed system is a set of
autonomous processors that are connected by a
network and which have software to coordinate them
self or share resources."” Coulouris et al. [COU 94]. No
shared memory. Message passing communication. A
clock for each processor.

» Multiprocessors systems: a multiprocessors system
Is a set of autonomous processors which have software
to coordinate them self and share resources but share
the same clock and the same main memory.

e Two scheduling approaches:
1. Global scheduling.
2. Partitioning.

Multiprocessor/distributed (3)

e Global scheduling:

» Few theoretical results (feasibility tests) compared to
mono-processor real-time scheduling.

» \We can expect optimal processor usage: busy
processors, less preemptions ... but task migrations.

» Difficult to apply to heterogeneous systems: task
migration, hardware, operating systems.

» Well suited for multiprocessors architectures.

Multiprocessor/distributed (4)

e Partitioning:

»

Theoretical foundations of mono-processor scheduling
compliant with current system implementation.

Non optimal resource sharing: a processor may stay
Idle, even if a task waits for a processor elsewhere In
the system.

Better reliability, deterministic behavior in case of failure:
failures of a task may only imply failure on its processor.

End-to-end worst case response time verification is
difficult to do (too pessimistic most of the time).

Partitioning i1s a NP-hard problem: Bin-packing.

Well suited for current synchronous distributed systems
(e.g. aircraft, ARINC 653).

Global scheduling (1)

e Types de processors:

»

Identical: processors have the same computing capability and run
task at the same rate.

Uniform: each processor is characterised by its own computing
capacity: for a processor of computing capacity s and for a work of
duration ¢, the processor allocates s - ¢ units of time to run the work.

Specialised: we define an execution rate for every uplet (r; ;4. j) :
the work i requires r; ; units of time on the processor ;.

|dentical ¢ Uniform c Specialized.
Specialized and uniform = heterogeneous processors.

|dentical = homogeneous processors.

Global scheduling (3)

e When migrations occur:
#» No migration: a task must always run on a given
processor=>partitioning.

» Job level migration: each job of a task can be run on any processor.
But a job started on a given processor can not be moved on another.

» Task level migration: a task can run at any time on any processor.

e Priority assignment:

Fixed priority assigned to tasks (e.g. RM).
» Fixed priority assigned to jobs (e.g. EDF).

Global scheduling (4)

e Two types of scheduling algorithms:

1. Adapt mono-processor scheduling algorithms:
» Global RM, global EDF, global DM, global LLF, ...
» Choose the level of migration.

» Apply the scheduling algorithm on all the set of the processors.
At each time, assign m highest priority tasks to the m processors.

» Preemptions occur when a job/task has to be run since it priority
is high and when all processors are busy.

2. New algorithms: PFair, LLREF, EDF(k), SA, EDZL, ...

e Be careful: multiprocessor scheduling is not a simple extension of
monoprocessor scheduling = theoretical results are different and there
are very few results.

¢ In the sequel, we assume identical processors.

Global scheduling (5)

e Example: global Deadline Monotonic

Ci |Pi |Di
T1 |2 = 4
T2 |3 5 5
T3 |7 20 |20

P1

o

o Priority assignment: 77 > Ts > Ts.

Job level migration.

T1[T1[T3[T3[T3[T2[T2[T2[T3 ‘I‘:’-WT& Tal [T1]T1
ﬁ@lrz T[T 1T T1(T1] [T2|T2]T2
0 4 8 12 16

Global scheduling (6)

e Example: global Deadline Monotonic

Ci |Pi |[Di
™ |2 4 -
T2 |3 5 5
73 |7 20 |20

F)'I T1({T1(T3|T3| T3 |T2|T2|T2] T1|T1 T2| T2 T1(T1
P2 E@E T1|T1[T3[T3] T3 [T3 IREINNEE FFRR
0 4 8 12 16

» Priority assignment: 77 > T5 > Ts.

Task level migration.

Global scheduling (7)

Task level (1,3) (2,3) (3,3)
migration

Job level migration (1,2) (2,2) (3,2)

No migration (1,1) (2,1) (3,1)

1: task fixed priority | 2: job fixed priority 3: dynamic priority
at each unit of time

e Comparing algorithms:

® Dynamic priority scheduling (3,3) are dominant. Optimality hierarchy is different from
mono-processor hierarchy: global LLF is dominant comparing to global EDF.

(1,7) are incomparable each others.

°

(*,1) are incomparable with (*,2) and (*,3).

Pfair scheduler: identical processors + synchronous periodic tasks with deadline on
request = optimal scheduler.

Global scheduling (8)

p1 T1|T1|T3|[T3 T3| T3 T1|T1{T2|T2

T |2 2 8

T2 |2 4 10

P2 WH TalTa]T4 T3[T3[T3[T3fTa[T4 T4 T4

T3 |4 6 8

0 4 8 12 16
R4=6 R4=8

T4 |4 7 8

e Critical instant:
In the monoprocessor case with periodic tasks, critical instant is the worst case on
processor demand and occurs in the beginning of the scheduling (busy period).
Assumption to compute worst case response times.

#® Is not true any more in the multiprocessor case.

Global scheduling (9)

e Hyperperiod:

In the monoprocessor case, the hyperperiod allows the verification:
1. Of a periodic task set with any S;.
2. With any deterministic scheduler.

0,lem(Vi : B;) + 2 - max (Vi : S;))

In the multiprocessor case, only one known result:

0, lem (Vi : P;)]

only for synchronous periodic task with deadline on request and
preemptif fixed priority scheduling :-(

Global scheduling (10)

e Scheduling errors:

» Errors: positive changes on a feasible task set lead to
an unfeasible task set.

» Scheduling verification is frequently made on worst
cases. Example : a sporadic task set can be verified as
a periodic task set.

» Parameters that could be related to scheduling errors:
C';, P, = decrease processor utilization factor.

Global scheduling (11)

e Scheduling errors:

Ci

Pi

Di

T1

1

4

2

T2

3

5

3

T3

-

20

8

» Job migration level.
» Feasible task set.

P1

P2

m

T3Jr3 |13

T2

T3

T3

™

T1

T

T1

Tzw"z T2

T2

12

16

Global scheduling (12)

e Scheduling errors:

T3 missed deadline

T [1 |5 |2 P1 [mmSsiwsys|vmsspusive] [[mof | [™ [[|

T2 |3 5 3

T3 |7 |20 |8 P2 [|“E]I | B [| I“|“| | |

0 4 8 12 16

» Job level migration.

» Increasing P, ... leads to a task set which iIs not feasible
any more.

Global scheduling (13)

e Main ideas of the Pfair scheduling:

»

We expect to find a schedule that leads to an equal
processor utilization factor between all processors
(called "Proportionate Fair" [AND 05]).

Optimal scheduler with identical processors and
synchronous periodic tasks with deadline on request.

Deadline oriented.
Task level migrations.
Lead to many context switches.

Landed on the Martian surface on July 4th, 1997

Unconventional landing — boucing into the Martian
surface

A few days lafter, not long after Pathfinder started
gathering meteorological data, the spacecraft
began experiencing total system reset, each resulting
In losses of data

What happened:

Pathfinder has an “information bus”

The meteorological data gathering task ran as an
infrequent, low priority thread, and used the information
bus 1o publish its data (while holding the mutex on bus).

A communication task that ran with medium
priority.

It is possible for an interrupt to occur that caused
(medium priority) communications task to be
scheduled during the short interval of the (high
priority) information bus thread was blocked
mai’rin(? for the (low priority) meteorological data

rea

After some time passed, a watch dog timer goes
Off, nohcnn? ’rhu’r the data pbus has not been
executed for some time, it concluded that
something had gone really bad, and initiated @
total system reset.

Priority order: T1 > 12> 13

failed attempt to lock R lock(R) unlock(R)

T2 is causing a higher priority task T1 wait !

T1 has highest priority, T2 next, and T3
lowest

13 comes first, starts executing, and
acquires some resource (say, a lock).

T1 comes next, interrupts T3 as Tl has
higher priority

But T1 needs the resource locked by T3,
so T1 gets blocked

13 resumes execution (this scenario is still
acceptable so far)

b3

12 arves, and interrupts T3 as T2 has
nigher priority than T3, and T2 executes
till completion

n effect, even though T1 has priority
than T2, and arrived earlier than 12,72
delayed execution of T1

This Is “priority Inversion’” I Not
acceptable.

Solution T3 should inherit T1's priority at
step 5

Consider tasks with mufual exclusion
constraints.

Priority inversion is a phenomenon that occurs
when a higher-priority task is blocked by a
ower-priority task.

Direct blocking: a high-priority task must not
preempt the exclusive resource use by a low-
priority task

Indirect blocking of a high-priority task by a
mediume-priority task — the medium priority task
preempfts a low-priority fask that holds a shared
resource — has to be avoided.

When a low-priority task blocks one or
more tasks of higher priority, it
temporarily assumes the highest priority
of a task it blocks

Task 3, highest priority

Task 2, medium priority

Task 1, lowest priority

| ... task executes task is preempted
B ... mutex resource use M ... task using mutex resource
B ... task is blocked runs at inherited priority

The priority-inheritance protocol does not prevent deadlocks
Example
1. Task 1 locks R2
2. Task 2 preempts Task 1 and locks R1
3. Task 2 tries to lock R2 but fails
4. Task 1 inherits priority from Task 2 but blocks when trying 1o lock
RT
Task 2, high priority
Task 1, low priority

| | ... task executes task is preempted
B ... mutex resource use [l ... task using mutex resource
B ... task is blocked runs at inherited priority

Each process has a default priority.
Assign a priority celiling to each resource:

The priority ceiling equals the priority of the
highest-priority task that uses the resource.

Af each time instant a task executes af a
dynamic priority that is the maximum of ifs own
static priority and the ceiling values of all
recources that it has locked.

© A task can only assume a new resource if
the task’s priority is higher than the priority
feiﬂngs of all the resources locked by other
asks.

Task 3: ... P(S1) ...
Task 2: ... P(S2) ...

Task 1: ... P(S3) ...

Task 3

Task 2
Task 1

Critical section guarded by Sx (priority ceiling):
B ... S1 (high) ... 82 (medium) B ... S3 (medium)

h

Embedded and RTOS

Fire alarm system: an example

Mo Al v
|\ System

» Problem

- Hundreds of sensors, each fitted with Low Range
Wireless K

- Sensor information to be logged in a server &
appropriate action initiated

- Possible Solution

- Collaborative Action \

- Routing o

Standalone Applications
Often no OS involved
Micro conftroller based Embedded Systems

Some Real Time Applications are huge &
complex
Multiple threads
Complicated Synchronization Requirements
Filesystem / Network / Windowing support
OS primitives reduce the software design fime

&

A
Feafures of RTOS's
\

@ Schedﬁwg\

- Resource Allocation.

Scheduling in RTOS
\UI g |

R,

» More informg’rion about the tasks are

known \

- No of tasks 1

- Resource Requireme\

- Release Time \

> N

Séh@uling Algorithms in RTOS

@ CIockEvem\Sc:heduling

-~ Weighted RoundRo{in Scheduling

Seheduling Algorithms in RTOS
(coﬁfcj)

A,

' Clock Driven

- All porome’r\éwbou’rjobs (release time/
execution fime/deadline) known in
advance. .

- Schedule can be computed offline or at
some regular time instances.

Weighted Round Robin
Jobs scheduled in FIFO manner

Time quantum given 1o jobs is proportional to it's

weight

Example use : High speed switching network
QOS guarantee.

Noft suitable for precedence constrained jobs.

Job A can run only after Job B. No point in giving time
quantum to Job B before Job A.

14

Scheduling Algorithms in RTOS
\ (contd)

' Priority Scheduling

(Greedy/ Lis’r\/EKen’r Driven)

- Processor never left idle when there are
ready tasks .

- Processor allocated to processes according
to priorities
rorifies

Earliest Deadline First (EDF)

Process with earliest deadline given highest
priority

Least Slack Time First (LSF)
slack = relative deadline — execution left

Rate Monotonic Scheduling (RMS)

For periodic tasks
Tasks priority inversely proportional to ii's period

T

N

es\o\urce Allocation in RTOS
A

- Resource Allocation
- The issues Wif\h\gheduling applicable here.

- Resources can be allocated in
- Weighted Round Robin \
-~ Priority Based

- Some resources are non &egmpTible

4 peqosel B

YY

Non Blocking Critical Section

Higher priority Thread may get blocked by
unrelated low priority thread

Priority Celling
Each resource has an assigned priority

Priority of thread is the highest of all priorities of
the resources it's holding

Priority Inheritance

The thread holding a resource inherits the priority
of the thread blocked on that resource

Y&

Inferrupt Latency should be very small
Kernel has to respond to real time events

Interrupts should be disabled for minimum
possible time

For embedded applications Kernel Size
should be small

Should fit in ROM
Sophisticated features can e removed

No Virtfual Memory
No Protection

Yo

LiInux for Real Time

Apﬁl\i\c\:o’r'ons
: ScheduI}Tg

- Priority Driven Approach
- Opftimize average case response fime

- Interactive Processes Given Highest Priority
- Aim to reduce responseMes of processes

- Real Time Processes \

Interrupts are disabled in crifical sections
of the kernel

No worst case bound on inferrupt
latency avaliable

eg. Disk Drivers may disable interrupt for few
hundred milliseconds

Not suitable for Real Time Applications
Inferrupts may be missed

YV

Processes are non preemtible in Kernel
Mode

System calls like fork take a lot of fime

High priority thread might wait for a low
priority thread to complete it's system call

Processes are heavy weight

Context switch takes several hundred
microseconds

YA

\va Linux

© Coexistence of Real Time Applications
with non Real Time Ones

- Example http server
- Device Driver Base
- Stability g
~ I .1/

H‘fl"
O “"..-' Ve\

(? _
07[?&, 1 Tmf\fk-:\v

Real Time Kernel at the lowest level

Linux Kernel is a low priority thread
Executed only when no real time tasks

Interrupts trapped by the Real Time

Kernel and passed onto Linux Kernel

Software emulation to hardware interrupts
Interrupts are queued by RTLINUX
Software emulation to disable_interrupfi()

R\T\L\i\nux contd
x (contd)

R,

' Real Time Tasks
- Statically allocate memory
- No address space protection

- Non Real Time Tasks are developed in

Linux
B 11 1L ..__ [\

Hardware layer

Ciisabled Lhlettupls ave hevel disabled

Lhierry E-_is
Quoened -

~ RTLinux

Hardwalbe I|
| Buoolalol

Lhiertupt ' : '
[isable . ; .

Mative Beal Real Feal
Linux Tiioe Tiioe Thioe
Kernel Task Task Task

YY

